Thumbnail image Center for Coastal Studies, NOAA permit 19315-1

[Lisa Kopp] Hi, everybody. Welcome to today’s webinar. We are going to get started in just a second. I’m going to give everyone just another minute to log on and get settled and figure out their settings. It’s very, very rainy today in Ithaca, New York. I’m seeing our panelists hop on. Hi, Irina and Dawn and Marissa.

And we are getting set up over to livestream on our Facebook page. So it’s exciting to see people signing on. We have just a couple more events celebrating migration celebration. And maybe some of you were here this past weekend for our in-person migration celebration, which was a lot of fun up in Ithaca, New York, where a lot of Marissa and Dawn’s work was being showcased and Irina’s work and many of their colleagues too.

So we are excited to share with those of you who couldn’t be in person with us this past weekend. And we are at the top of the hour, which is noon in upstate New York, where most of us are. So welcome to today’s webinar. We are coming to you from the Cornell Lab of Ornithology staff, students, and affiliates.

And today we’re going to be discussing some amazing research coming out of the K. Lisa Yang Center for Conservation Bioacoustics. So before we get into the really interesting stuff, which is, I know, why you all are here, I have to do a few announcements. My name is Lisa Kopp. I am on the visitor center team at the Cornell Lab. And I’m going to be facilitating today’s conversation.

As I mentioned, we have three PhD students today who are all housed within the K. Lisa Yang Center for Conservation Bioacoustics- Dawn, Irina, and Marissa. Hello to you all. Thanks so much for being here. And we’re going to hear introductions and then about the work that these three PhD students are working on in just a few minutes.

So as I mentioned, most of us are here in Ithaca, New York. That’s where the Cornell Lab of Ornithology is located. And so I want to read a statement acknowledging the Indigenous people as the original inhabitants of this area.

Cornell University is located on the traditional homelands of the GayogohónǫɁ, the Cayuga Nation. The GayogohónǫɁ are members of the Haudenosaunee Confederacy, an alliance of six sovereign nations with historic and contemporary presences on this land. The Confederacy predates the establishment of Cornell University, New York state, and the United States of America. We acknowledge the painful history of GayogohónǫɁ dispossession and honor the ongoing connection of GayogohónǫɁ people, past and present, to these lands and waters.

And for those of you who aren’t familiar with who we are at the Cornell Lab of Ornithology, we’re home to a community of researchers and supporters from all around the world who appreciate birds and biodiversity and the integral roles that they play in our ecosystems. So our mission is to advance leading edge research, education, and citizen science that help solve all of the pressing conservation challenges that we’re experiencing right now.

So a few tech notes for our audience. For those of you who are joining in on Zoom, we have closed captioning available. You just need to go down. Especially if you’re on a desktop computer, go down to the bottom of your Zoom screen, click the three dots, and you can either show or hide subtitles.

Today we’re going to be doing a presentation at the start. Dawn, Irina, and Marissa are going to talk a bit about their work. But we are going to be using the Q&A tool to both gather your questions while they’re presenting and then to answer as many of them as we can.

So use the Q&A tool for your questions and save the chat for us to be able to post links and information for you to follow up and learn more but also for any tech issues. So it’s really helpful if all of a sudden our sound goes out. Or actually, yesterday, there was a huge storm in upstate New York, and we lost power during one of our webinars. And that way, if the internet stays on, we can at least communicate what’s going on, or you can let us know if we are experiencing some technical issues.

We are also welcoming some friends on Facebook. So thank you to you all who are joining in on Facebook. We don’t want to leave you out of the conversation. So I’ve got some really wonderful colleagues behind the scenes who are helping to answer questions and share with us what the community on Facebook is interested in learning about.

So please use the comments on the Facebook page to share your questions, and we will get those answered as best as we can. But don’t click on any links that anyone else posts. We’ve had some bot issues. And we don’t want anyone to deal with any spam.

Oh, and last thing, because it’s always asked, is that we are going to be following up in the next few days with a recording of this webinar. So you’ll be able to rewatch it and digest things even further. And that will come via email in the next couple of days. Or you can visit the Bird Academy website and click the Open Lectures tab, and that will have all of our recorded webinars. There’s probably over 100 at this point.

OK. That’s a lot of information, but we’re going to get into the good stuff now and to just intro our topic and our panelists and then, as promised, hand it over to Irina and Dawn and Marissa. So I’m really excited to bring a broader perspective to our migration celebration programming today.

So most of you probably know, Lab of Ornithology, there’s a lot of people who love birds. But birds are part of a broader ecosystem. So birds can’t survive or thrive in isolation. And the Lab of Ornithology has a long history with acoustic monitoring and is home to really the world’s premier center for this kind of scientific study, the K. Lisa Yang Center for Conservation Bioacoustics.

And the Yang Center explores the world of sound looking at elephants, whales, birds, katydids, actually. There’s a whole world of acoustic monitoring that we can learn about. But today we get to focus on whales. So I’m going to let our panelists share more about that.

But I’m also feeling privileged to be able to host this to talk with three early-career female scientists. So, Marissa, Dawn, Irina, thank you all for being here today, sharing your work. And I’m hoping that you all would start out by sharing a little bit about who you are and what got you to where you are today. So I think we talked about the order being Marissa, Dawn, and then Irina. Do you mind sharing with us who you are?

[Marissa Garcia] Hi, everyone. My name is Marissa Garcia. I’m a PhD student here at the K. Lisa Yang Center for Conservation Bioacoustics at the Lab of Ornithology. And I am privileged enough to be able to study the sounds of whales and use that to inform their conservation.

In particular, my work right now is off the Oregon coast. And I’m using acoustics to tease out how changing oceanographic conditions affect where whales and Dolphins are and when. And if you’re curious to learn more about this work, here’s a website going into the project a little bit more. It’s called the HALO project.

[Lisa Kopp] Great. Thanks, Marissa.

[Dawn Parry] Hi, everyone. I’m Dawn, and I’m a fourth-year PhD student here at the Yang Center researching whales and fish using acoustics to identify the most important habitat areas that they use to protect those habitats in order to conserve the species as a whole. And I’m working right now in Bermuda. And I’m hoping to get to the South Pacific sometime early next year.

[Lisa Kopp] Great. Thank you, Dawn. Irina.

[Irina Tolkova] Hello, everyone. My name is Irina, and I’m collaborating with the K. Lisa Yang Center while completing my PhD at Harvard University. My background and studies are actually in applied math and in computer science. But growing up, I’ve always loved wildlife and wanted to work on conservation. And I found that there’s many, many opportunities to do so. So I’ve been working on the North Atlantic Right Whale Project as well as projects studying birds and other vocal species.

[Lisa Kopp] Great. Thank you, all. So Irina, Dawn, and Marissa are going to give a presentation talking about their work, which is going to last maybe 20, 25 minutes, or so. You are welcome to use the Q&A during their presentation, but I’m going to try to hold off and let them finish explaining things because so often what happens is that people ask questions that are about to be answered in the presentation.

So you can use the Q&A, and we will be sure to answer as many of your questions as we can once they’re done. Of course, if there’s something that comes up like what does this word mean or I’m not sure, can they explain what this looks like, I will raise my hand and hopefully find a nice moment to interject those questions. But go ahead and take it away, ladies.

[Marissa Garcia] Great. Let me share my screen here. Fabulous. So welcome to our talk today on behalf of the K. Lisa Yang Center for Conservation Bioacoustics. Today we’ll be talking to you about migrations, both great and small, spanning from whales to plankton.

But first and foremost, I want to set the stage for why we’re talking about North Atlantic right whales today. The three of us are researchers at the K. Lisa Yang Center for Conservation Bioacoustics here at the Cornell Lab of Ornithology. And our center is unique insofar as we study the sounds of all biodiversity and wildlife.

Just as we study birdsong, we also study whale song all the same. In fact, we just celebrated our 35th anniversary of studying bioacoustics. And we stay dedicated to our mission here, which is to collect and interpret sounds in nature by developing and applying innovative conservation technologies across ecologically relevant scales to both inspire and inform the conservation of wildlife and habitats.

And since the inception of our center, North Atlantic right whales have been at the heart of our research efforts, one of the key species studied by our former center leader Dr. Christopher Clark. However, North Atlantic right whales are facing a critical moment right now. As you can see here, their population rebounded to just under 500 individual whales in 2012.

And since then, their population numbers have plummeted. Now there are just over 300 whales left at all. Our center has been studying these whales since 1987. So as you can see, we have been studying them for as long as the time covered here on this graph. And this means that we’ve really seen it all. We’ve seen the population at its lowest. We’ve seen it rebound. And we’re seeing it struggling again.

So why is this the case? Why are we seeing the North Atlantic right whale population struggle so much right now? Well, North Atlantic right whales are dying off earlier than they should be due to human causes like vessel strikes and entanglement with fishing gear. However, we may be actually underestimating the impacts of these human causes.

Do you see the gray area there on these bar charts? So these are right whale deaths due to unknown causes because we actually don’t have enough evidence to decisively put the cause of death in one category versus the other. So it’s actually quite possible that the vessel strike and entanglement categories have an even greater impact than we’re even currently estimating.

And so I want to bring us back to this bigger theme of migration and how this all fits into the migration celebration we are all taking part in today. When we think of migration, we tend to think of it as a journey undertaken across different animal groups, birds and whales alike, grand in both time and scale, spanning continents, and governed by an ultimate quest to search for mates or food.

And so this is one kind of migration that we’ll be talking about today. In late fall of each year, the North Atlantic right whale begins its long migration down from its northern reaches near Nova Scotia up here to its southern grounds near Florida and Georgia where it mates.

And along the way, it makes a pit stop at the whale’s equivalent of a diner off the highway during a long cross-country road trip. And that’s what we’re going to call Cape Cod Bay right here as I’m sure many of you are familiar with. And here, the right whales stay from February to May each year. And their one task is to fill up on as much bountiful plankton before they make the long trip south.

And while the whales are feasting upon plankton in Cape Cod Bay, a second kind of migration is happening underneath the surface. In a process that scientists refer to as diel vertical migration, plankton migrate up to the sea surface and down to the seafloor on a daily basis.

In this diagram here, yellow represents the plankton in the ocean. So as you can see, during the daytime, plankton is concentrated and dense at the sea surface. And then during nighttime, plankton become spread out near the sea floor. And so this actually directly impacts what time of day whales decide to feast upon the plankton.

And let’s think about this in the context of a heaping bowl of M&Ms. You’re much more likely to grab a handful when a bowl is full of M&Ms because it’s a lot easier to grab several all at once. And so similarly, when the plankton is concentrated at the sea surface, it’s easier for right whales to scoop them up. Right whales mainly feed during the day.

However, at the end of the party and the M&M bowl is nearly empty, it’ll be pretty annoying to grab the last M&Ms. You can no longer scoop them up in one handful. You’ll probably need to pick them up one by one. Similarly, it’s a lot more effort for right whales to scoop up plankton that’s scattered around. So right whales don’t feed at nighttime.

And so you might be wondering, why do plankton undergo this daily migration from the sea floor to the surface and then back again? Well, just as birds have an internal clock telling them when it’s time to migrate annually, plankton may also have an internal clock that’s telling them when it’s time to migrate daily.

As to why this happens, it’s still an active area of research. But what this nevertheless shows us is that understanding how migration works may actually require us to explore many different examples across the animal kingdom. And to understand what’s happening with plankton, we may need to better understand what’s happening with birds. And ultimately, it’s all interconnected. At the end of the day, migration is an ecological phenomenon that unites both animals and the researchers who study them together.

And so you might be left wondering, how does this all relate back to acoustics and what we study here at the Yang Center? And as it turns out, the daily vertical migration of plankton also affects right whale vocalizations. So as we talked about, plankton is concentrated at the surface during the daytime so right whales can easily feast upon them then.

And this relates to this old adage, that you may be familiar with, of don’t talk with your mouth full. So when right whales’ mouths are stuffed with all this plankton, naturally, they can’t really vocalize at the same time.

So you’re hearing fewer right whale vocalizations whereas, at nighttime, plankton tend to be scattered at the sea floor, so right whales are taking a break from eating them. The scattered M&Ms example. And so since they’re not eating, right whales are plenty free to chat. And we’ll actually see a rise in right whale vocalizations at this period of time.

[Dawn Parry] So how do we listen to whales? With passive acoustic monitoring or recording the sound happening in the ocean. We now use underwater acoustic recorders called rockhoppers, which are the updated version of the units used to record right whale sounds for this project.

The main part of a passive acoustic monitoring unit is a hydrophone which records all the sound happening around it like a really powerful microphone that works in all directions. In our rockhopper unit, the hydrophone is contained in the cylinder at the top of this bright orange plastic case along with lots of batteries that allow the hydrophone to record for months and months.

The rockhoppers sit on the sea floor and record sounds from the very low frequencies that’s very low-pitched sounds like those of large whales and passing ships to very high-frequency sounds like dolphin whistles. One advantage of using underwater acoustic recorders is, they can collect data even in bad weather since storms really only affect the water surface and not the seafloor where the recorders sit.

But we do have to wait for good weather to go out on a boat to deploy or recover our recording units. This means we’re usually at each field site for about a week to make sure we have at least one good sea day, which means we get to spend some time in some really cool places.

Here are some photos of some other animal friends and beautiful places I got to visit on a recent trip to Bermuda, a photo of Marissa spotting some Pacific white-sided dolphins in Oregon, a trip through Boston Harbor on the way to deploy recorders, and a humpback whale spotted on a tagging expedition in the Arctic Circle.

And then when the weather is good, we head out. Sometimes we deploy one unit, sometimes 10. It depends what type of data we’re looking for and how much money we have since shipping one unit around the world is usually thousands of dollars. The more units we have, the longer our trips to sea are. But they’re almost always just one day on the boat without having to stay overnight since the deployment process itself is pretty simple.

After we test the units onshore, we just pick them up and drop them in. No special equipment needed. But they’re pretty heavy, so sometimes we do use ropes to help us out. But that is about as technical as it gets. So we toss this $22,000 piece of equipment in the water, leave it to record for six months to a year, and then fingers crossed, we get it back.

We go out on the boat again to recover the unit. And to recover the unit, we send a sound signal from a control box on the ship down to the unit underwater which tells this long yellow piece that you can see in the photo on the right to detach from those big weights that it’s attached to.

The weights remain on the sea floor where they will safely break down over time. But that yellow football shaped piece that you can see in the photo on the left and the orange part floats. So the rest of the unit floats to the surface.

So now we can see why the units are bright orange. The color helps them stand out in the water so that we can see when they surface. Then we use a hook like the one in the bottom left to grab the recorder, and we lift it right out of the water. Again, no special equipment needed just like the deployment. It’s just a little harder lifting them out of the sea than dropping them in.

So how did we eavesdrop on right whales in Cape Cod? We deployed five underwater recorders from February to May of 2019, and they continuously recorded the soundscape of Cape Cod Bay, including right whale vocalizations. The yellow dots on the map are the locations of the recorders.

The sounds the units record are converted into spectrograms. Spectrograms allow us to look at sound. They show the frequency of sound over time, which means each sound produces its own visual pattern in a spectrogram. Each whale has calls that look different, meaning that just by looking at the shapes of the sounds, we can know which whale made the sound.

So most of our work is done by looking at spectrograms, not listening to sound. But if we aren’t sure just by looking, we can listen too to double-check which species it is that we’re seeing. This is how North Atlantic right whale upcalls– so named because they look like an upward sweep and go upward in pitch– look in a spectrogram and what they sound like. When we go through spectrograms, we record whenever we see or hear a right whale call. This leads to a large list of dates and times when species were present.

[Irina Tolkova] So now after recovering the hydrophones, we have months of acoustic data. So now we have to go through and somehow analyze and process all of it. In the past, this would mean spending a very long time finding and labeling all of the individual upcalls within the data. But now we can actually take advantage of machine learning.

We can manually look at a small part of the data and then train a machine-learning based detection algorithm or specifically a convolutional neural network and detect the rest of the upcalls. So this way, we are able to process four months of data in just the course of hours. Here on the right, you see some examples of the types of upcall spectrograms that we find.

So now we can start to answer some questions about the upcalls and, through that, better understand the population size and distributions of right whales. Our first question is, when are the right whales vocalizing, both within the day and during the course of the year?

We can answer this question by visualizing the data as you see in this figure. On the x-axis here, we have the day of the year from late February to late May. And on the y-axis, we have the hour of the day. Inside, each square represents a particular hour on a particular day, and the color represents the number of calls from 0 in dark blue to about 500 in dark red. The white lines indicate sunrise and sunset.

So when are the most upcalls happening? As Marissa was describing earlier, we see the greatest number of calls during the night soon after sunset. And moreover, we can see that they enter Cape Cod Bay in about mid-February and leave in early May. So understanding this, when the right whales are actually in Cape Cod Bay, can let us make more informed conservation policies maybe by giving seasonal protections to their habitat.

So another question that we might be interested in is, where are they vocalizing? And one way to evaluate this is by conducting airplane surveys. Several times a week, ecologists from the Center for Coastal Studies would take a flight in a small airplane going back and forth along the Bay and would document the locations of all the right whales that they observed.

So as you can imagine, this takes a lot of time and effort. And it can be made more difficult but also dangerous by bad weather possibility. So another way to try to get at these locations is by using acoustic data. A lot of times when a whale produces a call, it might be measured on multiple hydrophones.

And since a sound will take longer to travel to a distant hydrophone than to one that’s close by, there will be time differences in when that sound is measured. We can actually take advantage of those time delays and localize the whales. This will also give us an estimate of their spatial distribution at a particular day or time.

So we can now compare these acoustic distributions to those that are coming from the airplane surveys. This is what is shown in the figure. So you see the outline of Cape Cod in gray. And the five black dots here are the five hydrophones that we had in the water.

In blue are the vocalizations based on acoustic data. And in red are the whale observations based on the airplane surveys. So you can see that they capture somewhat similar distribution though, of course, there are differences.

And so now why is this significant? Well, coming back to conservation, we know that there are many risks to right whales. Like other wildlife, they are affected by climate change and pollution. But a specific danger is the threat of collisions with ships, which can cause very serious injury.

So, for example, here is a map of Cape Cod Bay with color showing the amount of commercial vessel traffic. We can see that some regions here are very densely trafficked while other regions are at lower risk. If we can understand both where the whales are and where the vessel traffic is, we can best predict the risk of collisions in both space and time and, therefore, design conservation policies to mitigate this.

So as we draw to close of our story today, we have seen that migrations really are great and small from right whales that travel along the Eastern coast of the US to the daily migration of plankton up and down within the water column. Despite the differences in size, their lives are deeply interlinked like much of the natural world.

We’ve also seen that using sound can be used to study right whales. By deploying hydrophones and then using methods for machine learning, we can study data at very large scales over the course of months and then figure out when and where the right whales are. And in addition to learning about their lives, knowing when and where they are can help us design more informed conservation policies. We hope that, through this work, we can protect these critically endangered whales.

So now we would like to say that this research would not have been possible without the support of many of our colleagues and to the organizations that generously funded this work. We are really grateful for them all. And finally, we would like to thank you all for listening, and we would welcome all of your questions.

[Lisa Kopp] Thank you, all. That was fascinating and such a succinct summary of really incredible labor and mentally intense work. So thank you for that. We have some really great questions that have come in, some that are going to take us back to the start of the presentation.

And I’ll try to trade off asking questions between each of you. But you all obviously know your work far better than I do. So if I ask the wrong person, feel free to redistribute things. So one of the first questions that we were asked was, what do plankton eat, and do they require sunshine? Marissa, would this be for you? You kicked us off talking about plankton.

[Marissa Garcia] Yeah. So there are two different kinds of plankton. There are zooplankton, and there are phytoplankton. Phytoplankton are the plankton that you’ll see really taking-they’ll be taking all the sunshine and converting it into metabolic energy.

So some of the plankton that I did reference today will- I mean, we basically can consider those to be the plants of the ocean whereas zooplankton, these are more animals of the ocean, small crustaceans. They will eat even smaller things in the ocean. So they’re definitely two different forms. And a lot of that life is concentrated at the surface, thus why they go up there.

[Lisa Kopp] Thank you. I just want to make a quick reminder to everybody. If you could try to keep your questions in the Q&A as opposed to the chat, that way, I can quickly scan up and down that Q&A list to try to make sure I’m catching all of the most important themes.

Another really great question is, how do whales make their sounds? Joanne said, I didn’t think eating would affect that ability. They don’t use their lips to talk like we do, with a little smiley face. So, Dawn, is that maybe a question for you?

[Dawn Parry] Yeah. So baleen whales, which are the type of whale that the North Atlantic right whales are a part of, they make sounds with their larynx actually, which is a structure similar to our vocal cords. So yeah, that is how they do it. So that is kind of all in the same area. So that’s why they’re not vocalizing while they are feeding.

[Lisa Kopp] Great. And, Irina, I think this is for you. How are the distributions predicted from acoustics? And that might be a broad question. So I might ask– the person who wrote that didn’t put their name– that we might need a little more detail as to what they’re getting at. But is there a way to answer that question, Irina?

[Irina Tolkova] Yeah, for sure. So we start out with a very large amount of data from the five hydrophones. And then it’s processed by a machine-learning based algorithm to just isolate when the upcalls occur within the data. After that, we need to figure out are the upcalls being repeated across the different sensors or hydrophones.

And from there, that’s when we can use the time differences between when that upcall is heard at hydrophone one versus hydrophone two. We can use those differences to get a spatial location. So in terms of distributions thinking about them as spatial distributions, we would use time differences. In terms of thinking about just temporal distributions, that would be large-scale data analysis of our recordings.

[Lisa Kopp] It’s not a question in here. I’m just curious having heard that answer. What is the distance that these hydrophones can collect from? How far away a whale can they detect? Is that a question for Dawn?

[Irina Tolkova] I think–

[Dawn Parry] Yeah. So this is– oh, sorry.

[Irina Tolkova] Go for it.

[Dawn Parry] Irina might be better able to speak to this because this is actually really highly variable depending on the environment that the recorders are in. And Marissa and I are kind of chuckling because this is one of the major things that we’re learning about in our bioacoustics course that we’re taking right now.

There’s a whole lot of math involved, something called the sonar equation. So it takes into account the difference in something called the transmission loss, which is kind of the loss in sound energy through the water. And that’s dependent on a lot of different things. So maybe, Irina, you could speak a little more to that.

[Irina Tolkova] There is definitely a lot of variation in how sound travels underwater and how far it’s able to travel before you can’t detect it above the ambient noise. But it seems that somewhere between 10 and 20 kilometers would be close to the right distance.

[Lisa Kopp] Wow. But that varies depending on what else is happening. If there’s a giant shipping container, that’s going to be affected, right, or a terrible storm maybe?

[Marissa Garcia] Yeah. I can add on for that.

[Lisa Kopp] OK. Great.

[Marissa Garcia] So what you’re describing right there is, you’re already basically an acoustician yourself. That’s called acoustic masking. So basically, it’s this idea of– I mean, we experience it every day. Imagine you’re in a room full of people, and you’re trying to be heard over your mask, but you’re also trying to be heard over the people around you. And so you find yourself needing to compensate for that.

And so whales are very much doing the same thing. So if there’s a random loud sound like a noise from a shipping vessel or something, we do see whales having to expend more energy to vocalize above that. But with regards to more general long-term effects in a certain area, how far a recorder can record also depends on the ocean salinity and temperature.

But, I mean, we even hear sounds sometimes from earthquakes or from glaciers melting or cracking and all these kinds of things. So there are also a lot of geological stuff we can acoustically detect, which is really interesting.

[Lisa Kopp] Wow, that’s fascinating. We both just mentioned shipping vessels. We’ve got a couple of questions about bigger picture, what could be done, practically speaking, to prevent ship strikes.

And is there any information or accounting for that map that you showed first, Marissa, where we watched the increase in population size and then the decrease? Is there anything there aligning with shipping vessel policies or routes? I see a question here about– was the ship strike in effect before 2020 or 2012 when there was that big population decline? Is that a Marissa question?

[Marissa Garcia] Yeah. I welcome Dawn and Irina to hop in more on this question if you know more about it than I do. I personally haven’t really investigated year-to-time differences between them.

As to has shipping increased relative to this decline, what I will say is, there’s also a lot of genetics at play here. So the fact that the population is now down to 300, whales are dealing with an additional stress with that being that their population, their genetic pools are already so low that there’s not much genetic diversity left. So the population is already struggling to be robust in that regard.

They’re also dealing with like smaller food supplies. They’re dealing with more stress from a heating ocean. All these additional stresses are resulting in right whales also being malnourished. So even so, their ability to bounce back to recovery may be not as strong as it has been in former years due to them being rather malnourished from their environments.

But, Dawn and Irina, I don’t know if you have anything else to pop in there. But that’s kind of how I would think about it is that the odds are already a struggle. So it makes the vessel strikes and entanglement even worse.

[Lisa Kopp] Yeah. That’s really sad to hear. There’s an interesting question here that someone asked about a project with the Earth Species Project which uses artificial intelligence to translate whale languages. I don’t know anything about this specifically. But the question is, do you all see a day when we might be able to communicate with whales using artificial intelligence as an intermediary? It’s a fun question. Anybody want to take it?

[Dawn Parry] Yeah. I think we’re definitely not there yet. What that kind of research is going to require, it’s definitely going to require a lot of hours of acoustic recording, which is definitely an area that we’re certainly approaching in getting to. Our problem now is becoming where do we store all this data and how do we go through all of it more than how do we get all of it. So that’s a positive.

And then what it’s also going to require is a lot of behavioral studies. So really observing the whales, seeing what behaviors they’re doing because that’s how you get the context of what could the sounds mean, what’s the purpose of them. And that is difficult for any kind of whale because even when we’re observing them, most of that is from the surface. That could be from really far away like kind of high up in a helicopter.

And then we’re really only getting the surface. And we’re not getting what’s happening under the water, and long-term observation underwater is very tricky. So I think it’s going to be–the pieces are out there. I think it’s a little difficult to connect the dots.

But there’s a lot of species. There’s a lot more known with dolphins about behavioral context of their vocalizations because they’re a lot more numerous. And that’s the other unfortunate fact with right whales. There just really aren’t that many of them left to where we can probably get a ton of behavioral data. So yeah. But maybe when all of that comes together, we’ll see what happens.

[Lisa Kopp] Yeah. Wow. That’s really interesting. Yeah. I mean, I think we talked a little bit about it at the very beginning. But one of the things that I think is so unique and interesting about the work that the K. Lisa Yang Center does is, it allows for so much science without interrupting the daily life of these animals.

I think about these recording devices, I often hear the word “passive recording” because these units can go. And you don’t have humans intervening. It’s unique in a special way to gather information about animals that are hard to visually observe.

I think about the African forest elephants that are part of the Elephant Listening Project too, which we’ve done some really wonderful webinars. You can check out archived videos of those talks. But yeah, I hear what you’re saying, Dawn, about the realities of studying these animals that are just harder to watch.

So we have some really great questions about whales as they relate to climate change. So there’s two questions here. Read ones that whales are responsible for a large quantity of oxygen on Earth. And then another one is saying, how can restoring whales help mitigate global warming? I heard that they’re a very good way to sequester carbon. This is totally new information to me. Does anybody have any information on either of those topics or how they’re interrelated?

[Marissa Garcia] Yeah. I can chime in on this one. Excellent. It seems like our audience is really engaged at the whale world. I appreciate it. So I like to kind of frame it in the context of this anecdote, which is the fact that when commercial whaling was happening at greater scales in the continental US, you could claim that we saw a chemical shift in the composition of our ocean because there are more whale carcasses at the bottom of the ocean from when whale carcasses were kind of thrown off and they weren’t needed or the excess parts weren’t needed, that kind of thing.

And so we saw more whales at the bottom of the ocean. Therefore, more carbon sequestration was happening at the bottom of the ocean, which affected the ocean overall, which is really interesting. Whales are absolutely really big carbon sequesters. They themselves are big moving carbon, but they also are considered almost the fertilizers of the ocean.

And it’s actually part of this bigger phenomenon that biologists refer to as the whale pump, which is the notion that whales, by consuming these lower trophic level organisms, that being the tiny plankton, they’re able to cycle nutrients to the ocean faster and help fertilize the ocean in turn. So they both sequester a lot of carbon but are also really important for this notion of nutrient cycling and keeping the ocean alive and healthy.

[Lisa Kopp] Wow, that’s absolutely–

[Dawn Parry] Yeah. So phytoplankton, which is what gets fertilized by kind of the whale poo–the whale poo is rich in nitrogen, and that fertilizes the phytoplankton. And phytoplankton absorb like 40% of the world’s carbon emissions. So that’s kind of whales having positive direct and indirect effects just by existing. So let’s try to keep it that way, folks.

[Lisa Kopp] Yes. Absolutely. So I have one quick follow up question about that. Someone has asked, are plankton populations fairly stable at this point? They seem like a pretty important linchpin in all of this. Is that question for Marissa?

[Marissa Garcia] So that’s actually something I’m investigating a little bit in my PhD research over the next couple of years. And specifically, off the coast of Oregon, I’m looking at how the Northern California current impacts phytoplankton presence and how that in turn may be an indicator for whale presence and whether or not they’re likely to be there.

The coast of Oregon is very subject to hypoxia events, which is basically a fancy phrase to say when the ocean is super low in oxygen. As a result, the ocean can deal with toxic algae blooms or, in general, an ocean that’s not really fostering a lot of life. So whales would not really be in hypoxic regions.

So I’m investigating how warming climate, in general, is affecting hypoxic events. Are they making it more frequent? Are they resulting in phytoplankton being less stable, populations being less stable? So come back to me in five years, and maybe I’ll have an answer.

[Lisa Kopp] Wow. Irina, I have a question for you. It says, how do you interpret the difference in localization maps, i.e., aerial sightings not matched by acoustic information?

[Irina Tolkova] Yeah. I think that’s a really good question. And it’s a bit difficult to know because the two methods are measuring slightly different aspects. One is measuring how many whales are there at the surface of the water at the time of the aerial survey. And the other is measuring whether there’s a whale vocalizing underwater somewhere in the Bay. And those might not happen at the same time.

So I think we are for now thinking about whether there’s a qualitative evaluation whether this can inform. Maybe are we missing something with one matter with it or with the other? But I think it also shows the need for both methods kind of working together to be able to validate our data and have more confidence in our data.

[Lisa Kopp] Great. I was wondering if each of you would mind sharing a little bit about what’s the foundation that’s gotten you to the place that you’re at. I hear a lot of math. I hear a lot of biology. I hear a lot of chemistry. I hear maybe some general love for animals, naturalist background. Would you mind sharing a little bit about what got you to this place and what areas of studies you’re pulling from and focused on? Could we start with Dawn? And then we’ll do Irina and then Marissa.

[Dawn Parry] Yeah, sure. So I grew up at the Jersey Shore. Shoutout. And so always loving the ocean, loving marine organisms. I went to a school called the Marine Academy for Technology and Environmental Science in New Jersey, which is a public school that’s dedicated to math and science and specifically marine science. So that gave me a lot of foundation.

Then I went to the University of Rhode Island where I majored in marine biology and also got a minor in secondary education because I totally believe that doing all the research and all the science is really only half of it and that you have to be an effective communicator of science just both to your colleagues and also to policymakers and the general public to get those other elements involved because we all have to be in this together if we want to make change.

And I have done a few different research projects. I did actually a striped bass research project that was focused on figuring out their important nursing grounds and spawning sites for young fish. And that was when I realized that I had just also gotten done with a whale project figuring out where whales are throughout the year of sei whales, which is another kind of large baleen whale.

And that’s when I kind of realized the connection that I’m really interested in figuring out what the important habitats of animals are, trying to get those habitats legally protected in order to conserve the species as a whole. So now I’m more on the ecology side of things than biology. And I think that passive acoustic monitoring is a great way to do that because you get so much long-term data. We call it presenceabsence when the whales are there and aren’t there.

And then that’s the information that you really need to inform policy about when and where whales are present. So we can make policies like the ones that we have for the North Atlantic right whale like seasonal management areas where ships are asked to slow down in times of known high right whale activity in the area.

[Lisa Kopp] And, Dawn, we’re going to come back to that last thing you just said because we’re getting a lot of questions about what are the policies, what are the rules around shipping stuff. So maybe you can get ready for that after Irina and Marissa do their backgrounds.

[Irina Tolkova] Sure. So my background, I guess I also grew up on the ocean but on the other side of the US in Seattle. I went to the University of Washington. And I guess growing up, I just loved to read everything I could about wildlife and about conservation. But I also found that I really liked math, just learning it and working on algorithms, programming.

And so in the University of Washington, I majored in applied math and in computer science. And that was the direction that I was initially headed for grad school. I was working in robotics. But then I guess sometimes unexpected changes that happen in a trajectory, and I ended up changing laboratories. And I thought that would be a really good opportunity to come back to something that I was passionate about.

And so that’s how I started trying to find ways to apply all those types of ideas and methods in something relating to ecology and conservation. And I found that in bioacoustics, there’s just so many of these problems and so many good opportunities for interdisciplinary work and for collaboration. And so I’m really grateful now to be working on signal processing and machine learning but for vocalizations for understanding whales and for understanding birds. And so that’s how I got here.

[Lisa Kopp] Great. It’s so fascinating. I mean, I feel like I so often get the question of how can I work at the Lab of Ornithology or what are the people’s jobs. And I’m like, honestly, there are people with all kinds of backgrounds. And this panel is proof of that. Also, I liked your blue jay chiming in behind you, Irina. Marissa, do you mind telling us a little bit about your story?

[Marissa Garcia] Yeah. I grew up in Southern California. So yet another person who is near the ocean on the West Coast. And I’m very glad and grateful to be returning to the West Coast for my PhD area of focus in Oregon. But, I mean, I grew up with a fascination for the ocean for how organisms interact in their environment but largely also for the philosophical questions underlying ecology.

How do we interact with our environments? How do we communicate with one another? How do we perceive the environment around us? And so I really want to piggyback off of Irina’s interdisciplinary points because, to me, what has really drawn me to ecology and acoustics in the marine environment has been– because I think it’s the most interdisciplinary science. And I think there’s a perception that STEM is cold, hard STEM.

But, to me, it feels like I’m really studying multiple subjects all at once. I mean, I always knew I wanted to study whales. But when I came down to the end of high school, I had developed these loves in music. I was a cellist. I had studied Latin. I was obsessed with animal taxonomy. I was into linguistics and language.

And then I heard one day at a lecture at a marine organization–so highly encourage you guys to be attending webinars like this one. You never know when an idea will be sparked. I heard about dolphin language being studied, and I was like, that’s it. That seems like the culmination and the convergence of all these cool, artsy questions in a scientific context in the ocean.

So after several Google quests, I found out that the K. Lisa Yang Center for Conservation Bioacoustics existed from my bedroom in Southern California at the age of 17. And then I went to Harvard University to pursue my undergrad in integrative biology. And I minored in environmental science and public policy because policy and ecology interact all the time. And then I basically forced them to take me as a graduate student. So everything is possible, everyone.

[Lisa Kopp] That’s so great. Thank you. Well, I don’t think you had to work too hard to convince them, it sounds like. It was a natural fit. Thank you, all, for sharing that. I want to come back to two things that are all over the Q&A that you mentioned. Dawn, you talked about adjustments to shipping policies. And could you talk a little bit about what’s happening from a practical perspective in Cape Cod Bay to try to prevent strikes specifically?

[Dawn Parry] Yeah. So I’ve just put a link in the chat that everyone should be able to access if you’re interested. But there are seasonal management areas in place in the Northeast, including one in Cape Cod Bay.

And what that means is, since we have talked about how vessel strikes are such a threat to North Atlantic right whales, the National Oceanic and Atmospheric Administration, or NOAA, which is the agency that provides a lot of whale research, and a lot of the lovely photos in our presentation today are from NOAA, they mandate that all vessels longer than 65 feet must travel at 10 knots or less.

So that’s a pretty slow traveling speed in these seasonal management areas. And that’s to decrease the likelihood and the threat of vessel collisions with North Atlantic right whale. So basically, kind of the same idea of when people put out signs asking you to go slow because there’s kids that live in the area. Kind of the same thing for North Atlantic right whales. The slower you’re going, the more carefully you are driving, you’re less likely to hit something. So the same applies to North Atlantic right whales.

And one of the ways that global warming affects the North Atlantic right whales is that we see them as the waters warm, they’re moving further and further north. So there are all of these mitigation areas and measures in place in Cape Cod Bay. But some of the locations that they’re moving more north into have no mitigation areas in place.

It’s just not necessarily an animal that they’ve encountered before, not an animal that they’ve encountered before in those seasons. And there’s just not the mitigation measures in place. So that’s a concrete way that– the global warming can be changing things faster than policy can keep up with. So that’s why there is such a need for continuous monitoring of these species even in novel locations where they may not have been seen before or seen spending as much time in.

[Lisa Kopp] Yeah. That’s such a sad but really important point that things are changing and moving so quickly that developing the technology, having the bandwidth from a personnel perspective or a technological standpoint to be able to keep up with all of the crises that are at hand just is such a reality for this kind of science.

And we’re getting a lot of questions at that ecosystem level. There’s a question about does the increase in sharks near the coast have an impact on whales? Are whale populations following a similar trajectory to the lobster populations in Cape Cod Bay? And even could acoustic monitoring be used to understand affected populations within the right whale habitats?

And this is the blessing and the curse of science, right? You start to answer one question and just hundreds more pop out. We only have six minutes, which is crazy that this has gone so fast. But do you all have anything that you want to share about the next steps or the future of this work?

I mean, Marissa, you just talked a little bit about what you’re looking to address in the next five years or so. But anything about either your work or the work of the K. Lisa Yang Center or even just the acoustic monitoring field, the next frontier, or these next big questions that are looking to be answered? I’ll let you guys decide who wants to start with that. It’s a big question.

[Marissa Garcia] I can hop in and start here. And maybe I’ll spark some other points from y’all. Yeah. I think that in bioacoustics in general, we’re really trying to get it to actionable conservation that we can act upon quickly. There is a temporal lag that plagues science. We collect this data, and it takes us years to process it, especially acoustic data, my goodness. We have terabytes upon terabytes of data. It takes forever.

We went from drawing boxes on paper to thankfully having software now that we can draw boxes around the signals on the spectrograms. But now thanks to Irina’s work, for example, we’re developing machine learning algorithms that can automatically detect this stuff. And so hopefully, we’re going to be able to parse through this data faster.

And the goal is to get to a point where we can detect these organisms at a rate where we can be responsive policy-wise. I hope that’s where we move direction-wise in the next 10 years. This also requires us to have a better catalog, a library of understanding of what sounds each animal makes because, my goodness, imagine how complicated it would be to map the whole entire range of a human’s voice of expression.

This is the case that we deal for every individual species. There are differences between male, female organisms. There’s a difference between ages. There’s a difference in dialects across different organisms. So having a reliable library we can refer upon will help us automatically detect these better. So I would say those are the two areas of focus that I really hope we advance that in the next decade.

[Lisa Kopp] Great.

[Irina Tolkova] I just wanted to back what Marissa said, especially with technological advances on one end. We have the tools to be able to collect and process data on far greater scales than before both because we can store more data and because we can use machine learning methods to process far more data.

And this means that we’re getting closer to working on the spatial and temporal scales of monitoring, hopefully going towards global real time monitoring to be able to quickly make informed and effective policy decisions.

[Lisa Kopp] That’s crazy. That’s really cool. Dawn, anything you want to add?

[Dawn Parry] Yeah. I mean, I think they pretty much said it all. There’s a lot of exciting technological advances coming up. And I think there’s a lot more collaborations to be had between more biology and ecology folks like myself to the tech and math-savvy people like Irina who also know so much about the biology and ecology.

And I just think it speaks to the need for interdisciplinary science and all of the fields working together because you can’t come at a problem like this from one angle. So I think today is a small sample of seeing that this kind of work does happen and these big collaborative studies are possible and are definitely necessary to save species like the right whale.

[Lisa Kopp] Yeah, that’s so true. I think working in conservation, obviously, we all still have a lot of hope. We wouldn’t come to work every day if we didn’t. But it can also be really affecting hearing about all of the issues and problems that are there to be solved.

So I want to try to end on a higher note, which is, are there any ways that you all can recommend for people to get involved in this work? Someone I saw on the Q&A asked, are there any monitoring volunteer programs or ways to support this work? Anybody have any suggestions or ideas or organizations that you feel are really, really involving communities at a broad scale?

[Dawn Parry] Yeah. I’m trying to find some links. But I know whale-watching boats have– on each boat, they have-in addition to people just watching the whales for fun, they have observers who are out there usually taking photos and taking notes of any whales that they see. So that’s a way that they are contributing to the scientific data.

You can identify individual humpback whales by the patterns. On their tail, they each have if you kind of look at humpback whale tail, it’s kind of got splotchy blue and white pattern. So each humpback whale actually has a distinct tail.

So that’s one of the jobs that the observers have on the boat is to take pictures of those whales. And that way, they can get some data on which whales were there when, which is the similar kind of questions that we’re interested in answering with passive acoustics. So that’s one way to go.

[Lisa Kopp] Great. Thank you for that. Anything else that you all want to add in our last minute before I do a couple of quick wrap up announcements? This has been so fascinating. And I’m just so grateful for you all taking the time to explain your work and then rapid-fire-answer questions on a huge range of topics. So thank you, all, so much for today.

I mentioned at the start that we recorded today’s presentation. So if you want to go back and watch it again, share it with friends and family, if you registered on Zoom, you’ll be getting an email follow-up with a link to that archived talk. If not, you can check out our Bird Academy Open Lectures page and watch all of our archived webinars for free.

And then if you registered on Zoom, we’ll be sending a follow-up email with some of the links that we’ve been sharing in the chat so you can continue to explore more. And I just want to mention that this is a part of our migration celebration series. And we have a couple more events coming up this week.

So we hope that you will join to celebrate this special time of year in the world of bird migration and just a nice time of year to reflect on the season change and how we’re all a part of something bigger. So thank you again, Irina, Marissa, and Dawn, so much. And I hope everyone has a great rest of their day. All right. Bye, everybody.

End of transcript

Let’s look beyond the bird world and explore two very different kinds of migration that come together in the ocean. Although the word migration often brings to mind animals like birds or caribou crossing continents, this webinar with the Lab’s K. Lisa Yang Center for Conservation Bioacoustics explores the “vertical migration” of tiny plankton called copepods from the seafloor to the ocean surface and back again. During their time near the surface, these abundant creatures are a key food of endangered North Atlantic right whales during their own migrations.

Explore More:

This webinar is part of our annual Migration Celebration. Join us for two weeks of online events, family-friendly programs, and ideas and resources for your own migration activities. Visit the Migration Celebration website for the full schedule of events and recorded webinars.